jdlogo

jdlogo

jdlogo

jdlogo

jdlogo

New Topic

Exponents

Exponential Equations I

Exponential Functions

The Exponential Function Base e

The Logarithm Function

Logarithmic & Exponential Equations

Applications:Growth & Decay

Review&Test

 

jdsmathnotes

 


 UNIT 5  : EXPONENTIAL & LOGARITHMIC FUNCTIONS

 LESSON 2: EXPONENTIAL EQUATIONS HOMEWORK QUESTIONS

 

 

Text Box: Steps for solving:
·	Convert both sides of the equation to a common base
·	Isolate the power containing the exponent
·	Equate the exponents using the above theorem
·	Solve the resulting equation
           

 

 

 

 

 

 

 

1.  Solve for x.

 

                                                                              

 

Solutions:

                                                           

 

                                               

 

 

 

 

 

 

 

 

 

 

2.  Solve for x.

 

                                                                               

Solutions:

                                                                                                                                                                                                           

                                                                     

 

 

 

 

 

           

 

 

3.  Solve for x.

 

                                                                            

Solutions:

                                                       

 

 

 

 

                                   

4.  Solve for x.

 

                                                 

Solutions:

                                               

 

 

 

 

                                               

 

 

 

 

5.  Solve for x.

                                                         

 

Solutions:

           

 

 

 

 

6.  Solve for x.

                                                          

Solutions:

 

 

 

 

 

 

 7.  A biologist grows a colony of bacteria in a Petri dish.  Under ideal conditions, the doubling period is 3 h.  How long will it take for the colony to grow to 32 times its original size?

 

Recall:

A  = ?

A0 = ?

   t = ?

  d = 3 h

 
             ,  where

·        A is the number of bacteria after the given time frame    

·        A0 is the starting number of bacteria

·        2 is the growth factor

·        t is the total time elapsed in the experiment

·        d is the doubling period

 

Solution: In this problem, we are asked to find the time it takes to grow to 32 times its original size.  We are not told the exact starting and final numbers of bacteria.  The key here is that whatever the starting amount is, the final amount will be exactly 32 times larger.  Therefore we let the starting amount be 1 g .  Hence the final amount will be 32 g. 

 

We now have the following information in the box at right.                  

A  = 32 g

A0 = 1 g

   t = ?

  d = 3 h

 
 


           

 

Therefore it will take 15 h to grow to 32 times its original size.

 

8. The half-life of radium is 1600 years.  What fraction of radium remains from a sample after 12 800 years?

 

Solution: Again let the starting mass be 1 g.

 

Recall:

A  = ?

A0 = 1 g

   t = 12 800 years

  h = 1 600 years

 
 ,  where                                                                     

·        A is the mass remaining after the decay period

·        A0 is the original mass of radioactive material

·        ½ is the decay factor

·        t is the total time elapsed

·        h is the half-life of the material

 

           

 

Therefore   of the original amount remains after 12 800 years.

 

9. A bacteria culture doubles in size every 20 min.  How long will it take for a sample of 10 bacteria to grow to 20 480?

 

Solution:

 

A  = 20 480

A0 = 10

   t = ?

  d = 20 min.

 
           

 

Therefore it will take 3 2/3 hours.

 

10.  A sample of uranium A decays to 3.125% of its original mass after 2000 years.  Find its half-life.

 

Solution: Let the original mass be 100 g.  Hence the remaining mass is 3.125 g, leaving the information in the table below

 

A  = 3.125 g

A0 = 100g

   t = 2 000 years

  h = ?

 
           

Therefore the half-life of uranium A is 400 years.

 

 

        

Return to top of page

Click here to return to lesson