jdlogo

jdlogo

jdlogo

jdlogo

jdlogo

Home

Radians & Degrees

Angles in Standard Position Revisited

Trig. Functions & Graphs

Transformations

Trig. Identities

Trig. Eauations

Summary&Test

LESSON 7:Review & Summary

 

jdsmathnotes

 

 

 


Relation between Radians and degrees:

 

Text Box:                  

 

 

 

 

 

Example 1: Conversions from radian measure to degree measure

 

 

Solution: 

          

                                                

 

Example 2: Conversions from degree measure to radian measure

 

Solution: 

Text Box:
 

 

 

 

 

 

 

 

 

 

 

 

 


                                        

                                                                                               

 

 

 

 

 

 

 

 

 

 

 

 


                       

Angles in Standard Position:

 

                                                                                               

 

 

 

 

 

 

 

 

 

 

 

 

2.  Find the exact value of :

 

 

           

 

 

 

 

Graphs of Trig. Functions

 

 

 

 

 

 

 

 

 

Combinations of Transformations --  y = a sin k(x – d) + c   and   y = a cos k(x – d) + c

Example 4: Sketch the graph of the basic function   Use transformations to sketch  .

Solution:  For , construct a table of values of key points and plot the graph [blue]: 

 

x0

0

90

180

270

360

y

0

1

0

-1

0

 

 (x, y) -----------------------à (2x + 300,  3y + 1)

Using the mapping and the points from the table above we get points for the transformed graph

(x, y) -----------------------------à (2x + 300, 3y + 1)

(0, 0) ------------------------à (300, 1)

(900, 1) ----------------------à (2100, 4)

(1800, 0) ---------------------à (3900, 1)

(2700 , -1) --------------------à (5700, -2)

                        (3600, 0) ----------------------à (7500, 1)    [red graph at left]

In radians, the points (see table at top of page) would be:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Amplitude:   |a| = 3

Domain of 1 period or cycle (between red dots on graph):

Range: The maximum value of y is 4 and the minimum value is –2

 

 

 

 

                       

Text Box: In summary, to graph y = a sin [k(x – d)] + c from the graph of y = sin(x), follow these ideas:

·	If a < 0, we have a reflection in the x-axis
·	If k < 0, we have a reflection in the y-axis
·	If  | a | < 1, we have a vertical compression , factor | a |
·	If  | a | > 1, we have a vertical stretch, factor | a |
·	
·	If  | k | < 1, we have a horizontal stretch, factor 1/k
·	If  | k | > 1, we have a horizontal compression, factor 1/k
·	The value of d gives the horizontal translation (phase shift)
·	The value of c gives the vertical translation (shift)
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


Solving Trig. Equations:

 

 

 

 

 

 

 

 

 

 

 

 

 


Example:

 

Solution:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Text Box: Strategies for Proving Trig. Identities
1.	Start with the most complex side.  You may, however work on either side.
2.	Change any tan x expression to sin x and cos x using the quotient identity.
3.	Simplify algebraically using expanding or factoring where appropriate
4.	Use rules of fractions where needed – common denominators, multiplication and division rules for fractions.
5.	If sin2x or cos2x occurs, use the Pythagorean identities if they simplify the expression.
Basic Trigonometric Identities :

 

1.  Quotient Identity:

         

 

2.  Pythagorean Identities:

         

 

 

 

Return to top of page

Click here to go to chapter test