jdlogo

jdlogo

jdlogo

jdlogo

jdlogo

Home

Functions Defined

Functions You Should Know

Transformations of Quadratics

Translations

Reflections

Inverses

Stretches

Combinations

Combining Functions

Review&Test

 

 UNIT 2  : FUNCTIONS

 LESSON 6: STRETCHES & COMPRESSIONS

 

1.  Vertical Stretches and Compressions:

 

Example 1:  Given the graph of  y = f(x) as shown [blue], draw the graphs of y = 4f(x), and y = ½ f(x)

 


Solution:

 

The required graph of y = 4f(x) will be a vertical stretch factor 4 and may be represented in mapping form:

 

(x, y) ---------------------------(x, 4y)

 

 
 

 

 


(Now take key points on the graph of y = f(x)  -- {(-5, 1), (-3, 1), (-1, 3),(0,1.5), (1, 0), (3, 2)} and multiply the y-coordinates by 4.

 

(x, y) ----------------------------à(x, 4y)

(-5, 1) ---------------------------à(-5, 4)

(-3, 1) ---------------------------à(-3, 4)

(-1, 3) ---------------------------à(-1, 12)

(1, 0) ----------------------------à(1, 0)                                                              

(3, 2) ----------------------------à(3, 8)  [see red graph at left]

 

 

 

 

 

 

 

 

The required graph of y = ½ f(x) will be a vertical compression factor ½  and may be represented in mapping form:

(x, y) ---------------------------(x, ½ y)

 

 
 

 

 

 


(Now take key points on the graph of y = f(x)  -- {(-5, 1), (-3, 1), (-1, 3),(0,1.5), (1, 0), (3, 2)} and multiply the y-coordinates by ½ or 0.5

 

                                                (x, y) ----------------------------à(x, ½ y)  or  (x, 0.5y)

(-5, 1) ---------------------------à(-5, 0.5)

(-3, 1) ---------------------------à(-3, 0.5)

(-1, 3) ---------------------------à(-1, 1.5)

(1, 0) ----------------------------à(1, 0)                                                              

(3, 2) ----------------------------à(3, 1)     [see green graph above left]

 

 

Example 2:  Given the graph of  y = x2 as shown, draw the graphs of y = 3f(x), and y = ½ f(x)

 

 

Solution:

 

The required graph of y = 3f(x) will be a vertical stretch factor 3 and may be represented in mapping form:

(x, y) ---------------------------(x, 3y)

 

 
 

 

 

 


(Now take key points on the graph of y = x2  -- {(-2, 4), (-1, 1), (0, 0), (1, 1), (2, 4)} and multiply the y-coordinates by 3.

 

 

(x, y) ----------------------------à(x, 3y)

(-2, 4) ---------------------------à(-2, 12)

(-1, 1) ---------------------------à(-1, 3)

(0, 0) ----------------------------à(0, 0)

(1, 1) ----------------------------à(1, 3)                                                              

(2, 4) ----------------------------à(2, 12)  [see red graph y = 3x2 at left]

 

 

 

 

 

 

 

 

 

 

 

The required graph of y = ½ f(x) will be a vertical compression factor ½  and may be represented in mapping form:

(x, y) ---------------------------(x, ½ y)

 

 
 

 

 

 


(Now take key points on the graph of y = x2  -- {(-2, 4), (-1, 1), (0, 0), (1, 1), (2, 4)} and multiply the y-coordinates by ½ or 0.5

 

                                                (x, y) -----------------------------à(x, 3y)

(-2, 4) ---------------------------à(-2, 2)

(-1, 1) ---------------------------à(-1, 0.5)

(0, 0) ----------------------------à(0, 0)

(1, 1) ----------------------------à(1, 0.5)                                                                       

(2, 4) ----------------------------à(2, 2)   [see green graph y = ½ x2 above left]

 

 .

In summary, if k is an integer:

 The graph of kf(x) will be a vertical  stretch of factor k

and the graph of 1/k f(x) will be a vertical compression of factor 1/k

 
 

 

 

 

 

 

 


2.  Horizontal Stretches and Compressions:

 

Example 3:  Given the graph of  y = f(x) as shown [blue], draw the graphs of y = f(2x), and y =  f(1/2 x)

 


 

Solution:      For   f(2x), complete the table of values below; when x = -2.5, 2x will be –5 and read the

          value for f(-5) from the blue graph.  Here f(-5) = 1.

 

x

2x

f(2x)

-2.5

-5

1

-2

-4

1

-1.5

-3

1

-1

-2

2

-0.5

-1

3

0.5

1

0

1

2

1

1.5

3

2

 

 

 

 

 

 

 

Yielding the ordered pairs for f(2x) :  {(-2.5, 1), (-2, 1), (-1.5, 1), (-1, 2), (-0.5, 3), (0.5, 0), (1, 1) (1.5, 2)} and graph above [red]

Note that the required graph of y = f(2x) [red] will be a horizontal compression factor ½  of the graph of f(x) [blue]

and may be represented in mapping form:

 

(x, y) -------------------------à (1/2 x, y) or (0.5x, y)

 

 
 

 

 

 

 


For   f(1/2 x), complete the table of values below;

 

 

x

½ x

f(½ x)

-10

-5

1

-6

-3

1

-2

-1

3

2

1

0

4

2

1

6

3

2

 

 

 

 

 

 

 

 

Yielding the ordered pairs for  f(½ x) :  {(-10, 1), (-6, 1), (-2, 3), (2, 0), (4, 1), (6, 2)} and graph above [green]

Note that the required graph of y = f(½ x) [green] will be a horizontal stretch factor 2  of the graph of f(x) [blue]

and may be represented in mapping form:

 

 

(x, y) -------------------------à (2x, y)

 

 

In summary, if k is an integer:

 The graph of f(kx) will be a horizontal  compression of factor 1/k

and the graph of f(1/k x) will be a horizontal stretch of factor k

 
 

 

 

 

 

 

 

 

 

 

 

 

 


Return to top of page

Click here to go to homework questions