jdlogo

jdlogo

jdlogo

jdlogo

jdlogo

Home

Functions Defined

Functions You Should Know

Transformations of Quadratics

Translations

Reflections

Inverses

Stretches

Combinations

Combining Functions

Review&Test

 

 UNIT 2  : FUNCTIONS and TRANSFORMATIONS

 LESSON 3a: TRANSFORMATIONS OF QUADRATIC FUNCTIONS

Vertical Translations /shifts of Quadratic Functions:

 

 

Note that all three graphs are congruent.  The graph of y = x2 + 3 (green) has been shifted up 3

units relative to the graph of y = x2 (blue). This transformation (change) is called a vertical

translation (shift) up 3 units.  The transformation may be depicted in mapping form. 

Each point (x, y) on the base curve y = x2  has been transformed as follows:

 

(x, y) -------------------------------à  (x, y + 3)

 

Since the translation is up 3, we add 3 to the y-coordinate of each point on the original function.

 

The graph of y = x2 – 2(red) has been shifted down 2 units relative to the graph of y = x2. 

This transformation (change) is called a vertical translation (shift)  down 2 units.

 

The transformation may be depicted in mapping form.  Each point (x, y) on the base curve y = x2

has been transformed as follows:

 

(x, y) -------------------------------à  (x, y - 2)

 

 

Since the translation is down 2, we simply subtract 2 from the y-coordinate of each point on the original function.

Text Box: In general, the graph of y = x2 + k is a vertical translation of “k” units up or down relative to the base curve y = x2.
 

 

 

 

 

 

 


In general, the graph of y = x2 + k is a vertical translation of “k” units up or down relative to the base curve y = x2.

 

More generally, for any function f(x),  the graph of f(x)  +  k  is a vertical translation of “k” units (up or down) relative to f(x).

 

Horizontal Translations /shifts of Quadratic Functions:

 

 

Note that all three graphs are congruent.  The graph of y = (x -2 )2 (green) has been shifted right 2 units relative to the

graph of y = x2 (blue). This transformation (change) is called a horizontal translation (shift) up 3 units. 

he transformation may be depicted in mapping form. 

Each point (x, y) on the base curve y = x2  has been transformed as follows:

 

(x, y) -------------------------------à  (x + 2, y )

 

Since the translation is right 2, we add 2 to the x-coordinate of each point on the original function.

 

The graph of y = (x + 3)2 (red) has been shifted left 3 units relative to the graph of y = x2. 

This transformation (change) is called a horizontal translation (shift)  left 3 units.

 

The transformation may be depicted in mapping form.  Each point (x, y) on the base curve y = x2

has been transformed as follows:

 

(x, y) -------------------------------à  (x - 3, y)

 

 

Text Box: In general the transformation y = f(x - h)  produces a horizontal translation h units in the opposite direction of the sign before h.  In mapping form

(x, y) --------------------------à (x + h, y)
 

 

 

 

 

 

 

 

 


Example 1:  Sketch the graph of  y = (x + 1)2.  Refer to graph of y = x2  above.  This will be a translation left 1 unit relative to this graph.  In mapping form:

 

(x, y) ------------------------à (x – 1, y)   and using the basic points for y = x2  {(-2, 4), (-1, 1), (0, 0), (1, 1), (2,4)}, we obtain

 

(-2, 4) ---------------------à (-2 – 1, 4) = (-3,4)

(-1, 1) ---------------------à (-1 – 1, 1) = (-2,1)

(0,0) ---------------------à (0– 1, 0) = (-1,0)

(1, 1) ---------------------à (1 – 1, 1) = (0,1)

(2, 4) ---------------------à (2 – 1, 4) = (1,4)    yielding the graph below with vertex at (-1, 0)

 

 

 

Example 2:

 

 

    (x, y) ---------------------------à(x , y – 3)       

(-2, 4) ---------------------à (-2, 4-3) = (-2,1)

(-1, 1) ---------------------à (-1 , 1-3) = (-1,-2)

(0,0) -----------------------à (0, 0-3) = (0,-3)

(1, 1) ----------------------à (1, 1-3) = (1,-2)

(2, 4) ----------------------à (2 , 4-3) = (2,1)    yielding the graph at left with vertex at (0, -3)

 

 

 

 

 

 

 

 

 

 

 

 

(x, y) ---------------------------à(x - 3 , y - 2)       

(-2, 4) ---------------------à (-2-3, 4-2) = (-5,2)

(-1, 1) ---------------------à (-1 -3, 1-2) = (-4,-1)

(0,0) -----------------------à (0-3, 0-2) = (-3,-2)

(1, 1) ----------------------à (1-3, 1-2) = (-2,-1)

(2, 4) ----------------------à (2 -3, 4-2) = (-1,2)    yielding the graph at left with vertex at (-3, -2)

 

 

 

 

 

 

 

Stretches and Compressions of Quadratic Functions:

 

Example 3:  Given the graph of  f(x) = x2 as shown, draw the graphs of y = 3f(x), and y = ½ f(x)

 

 

Solution:

 

The required graph of f(x) = 3x2 will be a vertical stretch factor 3 and may be represented in mapping form:

(x, y) ---------------------------(x, 3y)

 

 
 

 

 

 


(Now take key points on the graph of y = x2  -- {(-2, 4), (-1, 1), (0, 0), (1, 1), (2, 4)} and multiply the y-coordinates by 3.

 

 

(x, y) ----------------------------à(x, 3y)

(-2, 4) ---------------------------à(-2, 12)

(-1, 1) ---------------------------à(-1, 3)

(0, 0) ----------------------------à(0, 0)

(1, 1) ----------------------------à(1, 3)                                                              

(2, 4) ----------------------------à(2, 12)  [see red graph y = 3x2 at left]

 

 

 

 

 

 

 

 

 

 

 

The required graph of y = ½ x2 will be a vertical compression factor ½  and may be represented in mapping form:

(x, y) ---------------------------(x, ½ y)

 

 
 

 

 

 


(Now take key points on the graph of y = x2  -- {(-2, 4), (-1, 1), (0, 0), (1, 1), (2, 4)} and multiply the y-coordinates by ½ or 0.5

 

                                                (x, y) -----------------------------à(x, 3y)

(-2, 4) ---------------------------à(-2, 2)

(-1, 1) ---------------------------à(-1, 0.5)

(0, 0) ----------------------------à(0, 0)

(1, 1) ----------------------------à(1, 0.5)                                                                       

(2, 4) ----------------------------à(2, 2)   [see green graph y = ½ x2 above left]

 

 .

In summary, if k is an integer:

 The graph of kf(x) will be a vertical  stretch of factor k

and the graph of 1/k f(x) will be a vertical compression of factor 1/k

 
 

 

 

 

 

 


 COMBINATIONS OF TRANSFORMATIONS

 

 

 

 

 

 

 

 

 

 

Text Box:
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


Return to top of page

Click here to go to homework questions